Impact of an Indoor Cookstove Intervention on Blood Pressure and Measures of Systemic Inflammation

Judy M. Heiderscheidt¹, Maggie L. Clark¹, Annette M. Bachand¹, Bevin Luna¹, John Volckens¹, Kiersten Koehler¹, Stuart Conway², Stephen J. Reynolds¹, Jennifer L. Peel¹

¹Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
²Trees, Water & People

Judy M Heiderscheidt, MS
January 2012
ETHOS

Funded by NIEHS R03ES019696-01
This work does not necessarily reflect the policies of the U.S. Environmental Protection Agency.
Cookstoves and Indoor Air Pollution

- More than half the world’s population worldwide utilizes biomass fuel and coal for heating and cooking

- Incomplete combustion of biomass fuels with poor ventilation generates high concentrations of indoor air pollution

- Complex mix of pollutants (PM, CO)

- Global burden of disease based on respiratory disease; cardiovascular disease research limited (Smith and Peel, EHP, 2010)
Global Noncommunicable Diseases — Where Worlds Meet

K.M. Venkat Narayan, M.D., Mohammed K. Ali, M.B., Ch.B., and Jeffrey P. Koplan, M.D., M.P.H.

The 10 Leading Risk Factors for Death, According to Income Level, 2004.*

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Deaths (millions)</th>
<th>Percentage of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. High blood pressure</td>
<td>7.5</td>
<td>12.8</td>
</tr>
<tr>
<td>2. Tobacco use</td>
<td>5.1</td>
<td>8.7</td>
</tr>
<tr>
<td>3. High blood glucose level</td>
<td>3.4</td>
<td>5.8</td>
</tr>
<tr>
<td>4. Physical inactivity</td>
<td>3.2</td>
<td>5.5</td>
</tr>
<tr>
<td>5. Overweight and obesity</td>
<td>2.8</td>
<td>4.8</td>
</tr>
<tr>
<td>6. High cholesterol level</td>
<td>2.6</td>
<td>4.5</td>
</tr>
<tr>
<td>7. Unsafe sex</td>
<td>2.4</td>
<td>4.0</td>
</tr>
<tr>
<td>8. Alcohol use</td>
<td>2.3</td>
<td>3.8</td>
</tr>
<tr>
<td>9. Childhood underweight</td>
<td>2.2</td>
<td>3.8</td>
</tr>
<tr>
<td>10. Indoor smoke from solid fuels</td>
<td>2.0</td>
<td>3.3</td>
</tr>
<tr>
<td>Low-income countries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Childhood underweight</td>
<td>2.0</td>
<td>7.8</td>
</tr>
<tr>
<td>2. High blood pressure</td>
<td>2.0</td>
<td>7.5</td>
</tr>
<tr>
<td>3. Unsafe sex</td>
<td>1.7</td>
<td>6.6</td>
</tr>
<tr>
<td>4. Unsafe water and poor sanitation and hygiene</td>
<td>1.6</td>
<td>6.1</td>
</tr>
<tr>
<td>5. High blood glucose level</td>
<td>1.3</td>
<td>4.9</td>
</tr>
<tr>
<td>6. Indoor smoke from solid fuels</td>
<td>1.3</td>
<td>4.8</td>
</tr>
<tr>
<td>7. Tobacco use</td>
<td>1.0</td>
<td>3.9</td>
</tr>
<tr>
<td>8. Physical inactivity</td>
<td>1.0</td>
<td>3.8</td>
</tr>
<tr>
<td>9. Suboptimal breast-feeding</td>
<td>1.0</td>
<td>3.7</td>
</tr>
<tr>
<td>10. High cholesterol level</td>
<td>0.9</td>
<td>3.4</td>
</tr>
</tbody>
</table>

The 10 leading causes of death by broad income group, 2004

<table>
<thead>
<tr>
<th>Low-income countries</th>
<th>Deaths in millions</th>
<th>% of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower respiratory infections</td>
<td>2.94</td>
<td>11.2</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>2.47</td>
<td>9.4</td>
</tr>
<tr>
<td>Diarrheal diseases</td>
<td>1.81</td>
<td>6.9</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>1.51</td>
<td>5.7</td>
</tr>
<tr>
<td>Stroke and other cerebrovascular diseases</td>
<td>1.48</td>
<td>5.6</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>0.94</td>
<td>3.6</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>0.91</td>
<td>3.5</td>
</tr>
<tr>
<td>Neonatal infections</td>
<td>0.90</td>
<td>3.4</td>
</tr>
<tr>
<td>Malaria</td>
<td>0.86</td>
<td>3.3</td>
</tr>
<tr>
<td>Prematurity and low birth weight</td>
<td>0.84</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Diseases for which there are epidemiologic studies:

- ALRI/ Pneumonia (meningitis)
- Asthma
- Low birth weight
- Early infant death
- Cognitive Impairment?

Chronic obstructive lung disease
- Interstitial lung disease
- Cancer (lung, NP, cervical, aero-digestive)
- Blindness (cataracts, trachoma)
- Tuberculosis
- Heart disease?
Brook et al. Circulation 2010

Blood
- PM or constituents in the circulation
 - UFP, soluble metals
 - Organic compounds
- Vasoconstriction
- Endothelial dysfunction
- PM-mediated ROS
- BP
- Atherosclerosis
- Platelet aggregation

Vasculature
- Endothelial cell dysfunction/vasoconstriction, ↑ROS
- Atherosclerosis progression/plaque vulnerability
 - Thrombogenicity (e.g. tissue factor)

Metabolism
- Insulin resistance, dyslipidemia, impaired HDL function

Blood
- Coagulation, thrombosis; ↓ fibrinolysis (e.g. PAI-1)

Systemic Oxidative Stress and Inflammation
- Cellular inflammatory response (↑ activated WBCs, platelets, MPO)
 - Cytokine expression/levels (↑ IL-1β, IL-6, TNF-α)
 - ET, histamine, cell microparticles, oxidized lipids; ↓ anti-oxidants

Vasculature
- Vasoconstriction
 - Endothelial dysfunction
 - Neural-mediated ROS
 - BP

Blood
- Platelet aggregation

Heart
- HRV
- Heart rate
- Arrhythmia potential

ANS imbalance
- ↑ SNS / ↓ PSNS

ANS

Bronchioles/Alveoli
- PM and/or constituents transmitted into blood
- Pulmonary oxidative stress & inflammation
- Activation of lung ANS reflex arcs

Blood
- Sub-acute & Chronic
- "Systemic spill-over"

Brook et al. Circulation 2010
Primary Objective

Evaluate the relationship of change in stove type and change in pollution levels (indoor PM$_{2.5}$, indoor and personal carbon monoxide) from Year 1 to Year 2 with changes in cardiovascular and respiratory endpoints.
Pilot Study Location

- El Fortin, community outside of Granada, Nicaragua
Study Partners

• Trees, Water & People (Fort Collins, CO)

• Casa de la Mujer (Granada, Nicaragua)
Intervention Design

Baseline Assessment
(Exposure and health assessment with traditional open fires)

Intervention
(Eco-Stoves or EcoFogón)

12 Month Follow-up
(Repeat exposure and health assessments; 9-12 months after intervention)

Summer 2008

Summer 2009

Colorado State University
Study Population

- 123 non-smoking, primary female cooks
 - Using traditional open fires at baseline
 - Kitchen area - at least 3 walls
 - Willing to buy subsidized improved stove after baseline measurements
Exposure Assessment
(Sub-sample)

- 48-hour indoor PM$_{2.5}$ (UCB particle monitor)
- 48-hour indoor CO (Draeger Pac 7000)
- 48-hour personal CO (Draeger Pac 7000)
- Housing and ventilation survey
Health Endpoints

• Lung Function
 – Piko-1 Peak Flow Meter
 • Forced Expiratory Volume in 1 second
 • Peak Expiratory Flow

• Symptoms questionnaire

• Blood Pressure

• Heart Rate
Health Endpoints – Dried Blood Spots

• Ideal for field conditions in developing countries
 – Less invasive
 – Minimal post-collection processing
 – Can be stored at room temp

• CRP, SAA, sICAM, sVCAM, IL1-β, IL6, IL8, TNF-α (Mesoscale Multiplex Kits)
 – David Diaz-Sanchez, Jackie Carter; US EPA
Baseline Population Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Mean (SD) or N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=123)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>35.4 (16.2)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28.1 (6.7)</td>
</tr>
<tr>
<td>Overweight/Obese (BMI ≥ 25)</td>
<td>85 (68%)</td>
</tr>
<tr>
<td>Obese (BMI ≥ 30)</td>
<td>44 (35%)</td>
</tr>
<tr>
<td>Education (years)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>33 (27%)</td>
</tr>
<tr>
<td>1-6</td>
<td>60 (49%)</td>
</tr>
<tr>
<td>7+</td>
<td>30 (24%)</td>
</tr>
<tr>
<td>Hypertension (SBP>140 or DBP>90)</td>
<td>24 (19%)</td>
</tr>
<tr>
<td>Exposure to second-hand smoke</td>
<td>42 (33%)</td>
</tr>
</tbody>
</table>
Baseline, cross-sectional analysis: Increase in systolic blood pressure per IQR increase in pollution measure (PM$_{2.5}$: 1.2mg/m3; indoor CO: 24 ppm; personal CO: 2ppm) (Clark et al. IJOEH 2011)
Mean 48-hour average PM$_{2.5}$
(25$^{\text{th}}$, 75$^{\text{th}}$ percentiles)

![Bar chart showing mean 48-hour PM$_{2.5}$ levels for different groups with reduction percentages and p-values.](chart.png)
Limitations

• Small sample size
• One-time measurement
• No control arm
• Mixed use of open fires and stoves
• Exposure reduction sufficient??
Study Challenges

- ~50% adoption
- Round-bottom pots
- Materials/weather
- Maintenance
- Inappropriate amount of firewood
- Competing needs in community
Unconstrained & Unprompted "Dislikes" of the EcoStove

- No problems, 33
- Bad materials, 18
- Chimney damaged, 8
- Water leaks from chimney, 6
- Doesn't get hot enough, quickly enough, 7
- Gets too hot, 3
- Too much ambient heat, 3
- Smoke escapes, 3
- Difficult to light, 3
- Not sturdy, 1
- Difficult to clean plancha, 2
- Needs a lot of maintenance, 1
Unconstrained & Unprompted "Likes" of the EcoStove

- Can cook multiple items at once, 80
- Less wood (fuel) use, 51
- Better food / cooks well, 19
- No / Less smoke, 113
- Can start and leave unattended, 2
- Quick to heat w/o the plancha, 4
- Takes up less space, 2
- More comfortable (ergonomics), 4
- Easy to start or use, 6
- Tortillas / can cook food directly on it, 22
- Pans / walls are cleaner, 24
- Better health for kids, 4
- Better health, 8
- Stays hot / warm for long time, 10
- Heats up fast & cooks quickly, 56
- Likes it was a gift, 2
- Likes everything, 8
- Likes nothing, 2
- It's pretty, 8
Summary of Findings

- 77% reduction in PM$_{2.5}$
- 72% reduction in indoor CO
- 62% reduction in personal CO
- Small reduction in mean systolic blood pressure
 - Consistent with other studies
 - Larger reduction among obese subjects, older subjects (4-6 mmHg)
- Additional ongoing work
 - Additional analyses and validation of blood spot samples
 - Examination of lung function tests and symptoms between year 1 and 2 and barriers to adoption
ACKNOWLEDGMENTS:

• Co-authors: Maggie Clark, Annette Bachand, Stuart Conway, Bevin Luna, Stephen Reynolds, John Volckens,

• Students/Research Assistants: Ryan Autenrieth, Alissa Bruno, Matt Bruno, Lindsay Davis, Sally Embry, Katie Fromuth, Tom Hraha, Bevin Luna, Leslie Marchand, Bill Marquardt, Erin McGuinn, Stephanie Minnaert, Grant Quiller, Laylaa Ramos, Christopher Ramos, Hannah Reed, Doug Robinson, Laura Danielle Wagner, Sarah Yoder

• Trees, Water & People

• El Fortin Participants

• Casa de la Mujer volunteers